Homework 9, due 12/5

Only your four best solutions will count towards your grade.

1. Suppose that α is a $(1,0)$-form on a compact Riemann surface X.
(a) If in a local holomorphic chart $\alpha=\alpha_{z} d z$, define $\bar{\alpha}=\overline{\alpha_{z}} d \bar{z}$. Show that $\bar{\alpha}$ defines a $(0,1)$-form on X, i.e. check that the coordinate representations of $\bar{\alpha}$ satisfy the right compatibility condition.
(b) Show that

$$
\int_{X} \frac{i}{2} \alpha \wedge \bar{\alpha} \geq 0
$$

with equality only if $\alpha=0$.
(c) Suppose that $f: X \rightarrow \mathbf{C}$ satisfies $\partial \bar{\partial} f=0$ (and X is compact). Show that f is constant, by considering the integral of $\partial f \wedge \overline{\partial f}$ and using Stokes' Theorem.
2. Let X be a compact Riemann surface, and for any (1,0)-form $\theta \in \Omega_{X}^{1,0}$, define the norm $\|\theta\|$ by

$$
\|\theta\|^{2}=i \int_{X} \theta \wedge \bar{\theta}
$$

From the previous question we know that this is a non-negative real number, which vanishes only if $\theta=0$. Denote by $[\theta]$ the equivalence class of θ in $\Omega^{1,0} /(\operatorname{im} \partial)$.
Show that if $\alpha \in[\theta]$ has minimal norm among the elements in the class $[\theta]$, then $\bar{\partial} \alpha=0$, i.e. α is a holomorphic one-form. (Note that this gives another approach to proving the isomorphism $H^{0,1}=\overline{H^{1,0}}$ from class.)
3. Let α be a 2 -form supported in a chart U on a Riemann surface. Suppose that z, w are two local coordinates on U, and $\alpha=f(z) d z \wedge d \bar{z}$ and $\alpha=g(w) d w \wedge d \bar{w}$ are the expressions of α in these coordinates. Show that the integral $\int_{U} \alpha$ defined in class is independent of the coordinate representation chosen for α.
4. (a) Let α be any meromorphic one-form on \mathbf{P}^{1}. Show that

$$
\sum_{p \in \mathbf{P}^{1}} \operatorname{ord}_{p} \alpha=-2 .
$$

Hint: show that $\alpha=f d z$ for a meromorphic function f.
(b) Let $p_{1}, \ldots, p_{k} \in \mathbf{P}^{1}$, and $a_{1}, \ldots, a_{k} \in \mathbf{Z}$ satisfy $\sum_{i} a_{i}=-2$. Can you find a meromorphic one-form α on \mathbf{P}^{1} such that $\operatorname{ord}_{p_{i}} \alpha=a_{i}$ for each i, and $\operatorname{ord}_{p} \alpha=0$ for all other p ?
5. Consider the one-form $\alpha=\bar{z} d z$ on \mathbf{C}.
(a) Does there exist a function $f: \mathbf{C} \rightarrow \mathbf{C}$ such that $\alpha=d f$?
(b) Does there exist $f: \mathbf{C} \rightarrow \mathbf{C}$ such that $\alpha=\partial f$?
6. In class we showed that $\operatorname{dim} H_{X}^{1,0} \leq g$, where g is the genus of the compact Riemann surface X. Let

$$
H^{1}(X, \mathbf{R})=\frac{\operatorname{ker}\left(d: \Omega^{1}(X) \rightarrow \Omega^{2}(X)\right)}{d \Omega^{0}(X)}
$$

denote the De Rham cohomology of X. Show that $\operatorname{dim}_{\mathbf{R}} H_{X}^{1,0}=\operatorname{dim}_{\mathbf{R}} H^{1}(X, \mathbf{R})$ by showing that the map $H_{X}^{1,0} \rightarrow H^{1}(X, \mathbf{R})$ given by $\alpha \mapsto \alpha+\bar{\alpha}$ is a (real linear) isomorphism. This can be used to show that $\operatorname{dim} H_{X}^{1,0}=g$.

